
This paper has been accepted for publication in IEEE Local Computer Networks Conference,
Osnabruck, Germany, October 2019. This is an author’s copy. The respective copyrights are with IEEE.

A Machine Learning Approach for RDP-based
Lateral Movement Detection

Tim Bai, Haibo Bian, Abbas Abou Daya, Mohammad A. Salahuddin, Noura Limam and Raouf Boutaba
David R. Cheriton School of Computer Science, University of Waterloo, Ontario, Canada

{tim.bai, haibo.bian, aaboudaya, mohammad.salahuddin, n2limam, rboutaba}@uwaterloo.ca

Abstract—Detecting cyber threats has been an on-going re-
search endeavor. In this era, advanced persistent threats (APTs)
can incur significant cost for organizations and businesses. The
ultimate goal of cyber security is to thwart attackers from
achieving their malicious intent, whether it is credential steal-
ing, infrastructure takeover, or program sabotage. Every cyber
attack goes through several stages before its termination. Lateral
movement (LM) is one of those stages which is of particular
importance. Remote Desktop Protocol (RDP) is a method used
in LM to successfully authenticate to an unauthorized host
that leaves footprints on both host and network logs. In this
paper, we propose to detect evidence of LM with an anomaly
detection approach that leverages Windows RDP event logs. We
evaluate various supervised machine learning (ML) techniques
for classifying RDP sessions with high precision and recall. We
also compare the performance of our proposed approach to a
state-of-the-art approach and demonstrate that our ML model
outperforms in classifying RDP sessions in Windows event logs.

I. INTRODUCTION

Advanced persistent threat (APT) is one of the most
prominent cyber attacks with the potential to cause significant
damage to various organizations and businesses. It is a stealthy
attack in which attackers gain unauthorized access to a network
for a long period of time. Stuxnet [1], an infamous attack
on critical infrastructure, devastated Iran’s nuclear program.
According to Kaspersky Lab [2], a backdoor program called
Carbanak, caused a billion dollar in cumulative losses for a
financial institution. Furthermore, more than 80 million social
security numbers were siphoned from Anthem, a big health
insurance company, which was only detected after nine months
[3]. In this attack, Mivast malware [3] masqueraded as a VPN
software, serving as a backdoor for the attacker.

Most secured systems maintain a strong boundary between
the internet and the intranet, thus attackers choose targets that
have access to hosts behind the network security functions
(e.g., firewalls, intrusion prevention systems, etc.). It is difficult
for attackers to launch attacks against protected assets that
reside in the intranet. Thus, an attacker usually leverages social
engineering techniques (e.g., phishing, pretexting, baiting, etc.)
to trick insiders into executing malicious code or surrendering
credentials. This allows the attacker to gain access to the vic-
tim’s computer and gradually explore for valuable information
by exploiting vulnerabilities of other intranet entities. This is
commonly known as Lateral Movement (LM).

Machine Learning (ML) techniques have been widely used
for anomaly-based APT detection [4], since ML is an ideal
tool to automatically establish the normal behavior of a

system [5]. Remote Desktop Protocol (RDP) is designed by
Microsoft to provide remote display and input capabilities,
while Remote Desktop Service (RDS) is a native service on
Microsoft Windows platform that implements RDP. This service
is frequently used by legitimate administrators. However,
it is also a major tool used by attackers during LM [6],
since discriminating between legitimate and malicious use is
challenging. We surveyed nine distinct APT incidents and five
of them used RDP during the attack. In this work, we focus
on detecting anomalous RDP sessions based on host-based
evidence. The primary contributions of this work are:
• We highlight the limitations of two publicly available

Windows event log datasets from Los Alamos National
Laboratory (LANL) [7], [8]. To overcome limitations, we
combine the datasets while preserving their realistic property.

• We propose an anomaly-based approach for detecting mali-
cious RDP sessions. We explore different feature sets and
evaluate various supervised ML techniques for classifying
RDP sessions in Windows event logs.

• We compare the performance of our proposed approach to
a state-of-the-art method [9], and demonstrate that our ML
model outperforms in the classification of RDP sessions.
The rest of the paper is organized as follows. Section II

presents the related works on detecting APT. In Section III,
we analyze the dataset employed in this work. We delineate
the evaluation results in Section IV. Section V provides a brief
summary of our work and instigates future research directions.

II. RELATED WORKS

Ussath et al. [6] analyze twenty two different APT reports
and summarize different techniques employed in corresponding
APT campaigns. They also implement a user behavior simula-
tion system [10] to generate user activity logs for Windows
platforms. They leverage feed-forward neural networks and
recurrent neural networks to identify malicious log events.
However, the dataset generated by their simulation system is
based on hypothetical assumptions. For example, some of their
ML features, such as longitude and latitude of the user, are
impractical for most real-world scenarios.

Kaiafas et al. [9] successfully employ an ensemble of
classifiers for detecting malicious events in the LANL dataset
[7]. However, the authors are oblivious to the biased nature
of the dataset. Based on our analysis (cf., Section III), all red
team events in the dataset originate from four unique hosts.
This implies that the ML classifiers will be biased to the source



host feature (employed in [9]) in training and inference. We
highlight this limitation in Section IV.

Siadati et al. [11] implement a system that extracts logon
patterns for anomaly detection. They propose a novel pattern
mining algorithm that is scalable for large dataset. Their system
consist of two components, an exact matching classifier and a
pattern matching classifier. While the exact matching classifier
is prone to logon history poisoning, the pattern matching
classifier complements it by matching a logon to all possible
combination of attributes that describe it. While the authors
propose host-based anomaly detection that leverages pattern
matching, the focus of our work is to harness ML techniques
for anomaly detection.

III. DATASET

The dataset plays a crucial role in the success of ML.
However, Windows event log datasets that represent real user
behavior are fairly limited. Most publicly available datasets,
such as [12], [13], facilitate network-based intrusion detection.
In contrast, host event logs contain sensitive information
limiting their distribution by organizations [10]. To overcome
this limitation, researchers (e.g., [10]) often simulate user
and attacker behavior to generate synthetic datasets. However,
datasets generated using this approach are purely based on
hypothetical assumptions, and may not depict real-world user
behavior. Therefore, to preserve the realism of user behavior,
we leverage and combine two real datasets from LANL, namely
comprehensive [7] and unified [8] datasets.

A. Comprehensive Events Dataset

The comprehensive dataset [7] spans 58 days, and consist of
activities generated from 12,425 users and 17,684 computers.
The dataset is divided into five different logs, namely authenti-
cation, process, flow, DNS and red team logs. The red team
log contains a subset of events from the authentication log,
which are generated from red team activities (e.g., compromise
events). Hence the red team log provides the ground truth
for ML. In this work, we leverage the authentication and red
team logs for detecting malicious RDP sessions. However,
based on the dataset description and our observations, there
are limitations in the authentication log:
• The number of red team events is very small, accounting

for less than 0.0001% of the total events and only appear in
certain time intervals.

• There are no logoff events, making it impossible to deduce
certain crucial features, such as the logon session duration.

• The timestamp is obfuscated in UNIX time epoch. As a
result, it is difficult to categorize events into days, which
could be a discriminating feature to identify abnormal usage.

• A large number of RDP logon events have the same source
and destination host, which is beyond reason.

B. Unified Events Dataset

The unified dataset [8] is collected within LANL over a 90
day interval. Unlike the previous dataset, this dataset provides
comprehensive and detailed Windows event logs including

the missing logoff events. Although the timestamps in this
dataset are also obfuscated, events are already divided into
days. However, the primary limitation of this dataset is the lack
of red team activities, i.e., this dataset only contains benign
user activities. Furthermore, the source host is missing in some
4624 LogonType 10 events and all 4625 LogonType 10 events.
The 4624 event records all successful logons and event 4625
records logon failures with reason, while type 10 in both events
indicate that RDP is used for remote login. Both of these events
are crucial for tracking (malicious) RDP sessions [14].

C. Combining Datasets

Both datasets have limitations according to their authors
[15] and our observations. Hence, we decided to inject red
team events from the comprehensive dataset [7] into the unified
dataset [8]. Since these two datasets were collected within the
same organization, we do not lose the properties and patterns
of attack events. However, these two datasets are obfuscated
with different hash functions and cannot be simply merged.
Also, recall that the red team events originate from only four
unique hosts. Indeed we could have mapped these four source
hosts into a larger group of hosts in our new dataset to avoid
any bias in the ML classifier. However, we did not choose this
approach to preserve the authenticity of the attacks.

Instead, we proceed as follows. Let R be the collection of
red team logon events from the comprehensive dataset and B
the collection of benign RDP logon events extracted from the
unified dataset. For each event ei ∈ R, we map the source host
Srci to a randomly selected unique source host Srcj from an
event ej ∈ B. We further map the user name and destination
host tuple {Usri, Dsti} of ei, to a randomly selected unique
tuple {Usrk, Dstk} from an event ek ∈ B. After mapping,
we insert, in chronological order, the modified red team events
e′i into the set B, labeled as malicious. There are no changes
needed for timestamp, since the the unified dataset already
spans the red team event’s time interval.

We extract a total of 222,692 events with ID 4624, 4625
and 4634, and authentication type 10. We discard all 4625
(failed logon) events and 4624 events with missing source
host. After removing the invalid data entries and extracting
relevant features (cf., Section IV), we end up with 56,837
events. The significant reduction in datapoints come from
combining logon events (ID 4624) with their corresponding
logoff events (ID 4634) into RDP session events with well-
defined session length. Benign logon events from the unified
dataset with no corresponding logoff events are omitted as well.
It is important to note that the injected red team authentication
events only contain logon events (ID 4624) but no logoff events
(ID 4634). Hence, this hampers the computation of malicious
RDP session’s duration. To this end, we generate a session
duration for each red team event from a normal distribution
N (µ, σ2), where µ and σ are the mean and standard deviation,
respectively, computed from all benign RDP session’s duration.
Though a random distribution may be more reasonable, as
attacks can last for any duration, we assume that attackers have
similar behavior (session durations) to benign users.



IV. EXPERIMENTATION

A. Environment Setup

1) Hardware: The data analysis, visualization and pre-
processing are performed on a cluster of four nodes, each
featuring an Intel(R) Xeon(R) E3-1230 v3 3.30GHz CPU and
16GB RAM. Nodes are interconnected with 10Gbps Ethernet.
Model training and validation are performed on an Amazon
AWS EC2 t3.medium instance.

2) Software: A Logstash instance is deployed to ingest the
dataset into an ElasticSearch [16] cluster, and Kibana is used
for data visualization. For data pre-processing, a variety of
Python packages, including Numpy [17], Scipy [18] and Pandas
[19] are employed. The ML models are developed in Python
with Scikit-learn [20] and Keras [21] libraries.

B. Evaluation

1) Metrics: We define malicious RDP sessions as positive
subjects and use a variety of performance metrics to evaluate the
different ML techniques. The accuracy indicates the percentage
of sessions that are correctly classified. Whereas, precision
is the percentage of sessions that have been identified as
malicious are indeed malicious. A higher precision implies a
higher confidence in the true nature of the sessions flagged as
malicious (i.e., lower false positives). On the other hand, recall
is the percentage of malicious sessions that have been correctly
identified. A higher recall implies a higher confidence that
malicious sessions were not missed (i.e., lower false negatives).

We also present the F1 score, a harmonic mean of precision
and recall. This metric provides the aggregate performance of a
classifier. Though accuracy also depicts the overall performance,
F1 score is more reliable when the dataset is imbalanced (in
our case, more benign than malicious datapoints). To illustrate
the performance of the classifiers at different classification
thresholds, we leverage the Precision-Recall (PR) curve. We
also use the Average Precision (AP) score, which is the
weighted average of precision at each decision threshold, and
estimates the area under the PR curve.

2) ML Techniques: We employ various ML techniques to
evaluate our approach for detecting malicious RDP sessions. We
leverage Logistic Regression (LR), a classic regression model
that is known to capture the relationship between variables.
Similarly, we employ Gaussian-NB (GNB), a probabilistic
classifier based on Bayes’ theorem, without specifying any
prior distribution. We also evaluate the Decision Tree (DT)
classifier with a maximum depth of three and criterion entropy.
Furthermore, we evaluate Random Forest (RF) and LogitBoost
(LB), which are ensemble methods built on top of DT. RF tends
to solve the over-fitting problem in DT, while LB combines a
set of weak learners to construct a strong learner.

3) Results: To validate our ML models, we first employ
k-fold cross validation (k = 10). Recall that all the attacks in
the employed dataset originate from four unique source hosts.
Therefore, a classifier that uses the source host feature may
tend to predict all events with these source hosts as malicious,
leading to a bias in classification. Therefore, we remove from

our feature set those features that cause this bias, namely user,
source host and destination host. Table I depicts the result after
removing these features. The DT algorithms have both high
precision and recall, with LB using DT regressor outperforming
all other classifiers. This is primarily because LB classifiers are
designed to boost the performance of existing classifiers [22].
Even though the probabilistic GNB classifier under performs
the DT family of classifiers, it outperforms LR.

TABLE I
RDP SESSION CLASSIFICATION (user, src AND dst FEATURES REMOVED)

Classifier Accuracy Precision Recall F1

LR 98.50% 11.34% 1.87% 0.321
DT 99.90% 99.04% 93.58% 0.962

GNB 99.60% 87.31% 82.11% 0.846
RF 99.94% 99.59% 96.13% 0.978
LB 99.99% 99.87% 99.47% 0.997

The authors in [9] improve the performance of their stand-
alone classifiers by consolidating them using ensemble ML.
We employ a similar approach with Majority Voting (MV)
algorithm and a careful selection of the classifiers. The best
performing ensemble has minor improvements in precision, but
results in a much lower recall than stand-alone LB. Evidently,
MV is unable to boost the performance of the stand-alone
classifiers, as shown in Table II. Therefore, we use LB (with
100 estimators) as Our Model.

TABLE II
MAJORITY VOTING FOR RDP SESSION CLASSIFICATION USING SELECTIVE

CLASSIFIERS (user, src, AND dst FEATURES REMOVED)

Classifiers Accuracy Precision Recall F1

GNB, RF, LB 99.95% 99.87% 96.26% 0.980
GNB, RF, DT 99.91% 99.58% 93.32% 0.964
GNB, LB, DT 99.91% 99.73% 93.32% 0.964
RF, LB, DT 99.95% 99.73% 96.13% 0.979

C. Comparative Analysis

We compare our stand-alone LB classifier with Kaiafas
et al. [9]. We implement their approach and evaluate the
corresponding model on our dataset. During feature extraction,
we omit the geometric distribution feature, since all the failure
events are filtered out due to missing source host in the dataset.
As shown in Table III, with all available features, the recall
of Kaiafas’s model is slightly lower than our model (first
two rows without *). Though their precision is better, the F1

score indicates an overall performance drop in comparison
to our model. Furthermore, after the removal of user name,
source host and destination host features from both models,
Kaiafas’s model has a significant drop in recall from 98.67% to
90.66% (last two rows with *). On the other hand, the training
time (TT) of Kaiafas’s model is about 80% higher than our
model. This can primarily be attributed to the larger number
of features and construction of extra classifiers. Therefore,
our model outperforms the state-of-the-art in RDP session



TABLE III
RDP SESSION CLASSIFICATION USING STAND-ALONE LB VS. [9]

Classifier Accuracy Precision Recall F1 TT (s)

Our Model 99.99% 99.87% 99.73% 0.998 11.28
Kaiafas et al. 99.98% 100.00% 98.67% 0.993 20.48
*Our Model 99.98% 99.87% 99.47% 0.992 10.53

*Kaiafas et al. 99.88% 100.00% 90.66% 0.951 18.19
* = Model validation without user, src and dst features

classification, and promises suitability for online host-based
anomaly detection.

Finally, to further evaluate the models against zero-day
threats, we perform a robustness test. We split the dataset
into training (75%) and testing (25%). While the training set
contain attacks originating from three different sources, the
testing set contains an additional source that does not appear
in the training set. In Fig. 1, we present the PR curve, which
illustrates the trade off between precision and recall at different
thresholds. As evident, our model’s PR curve is very close to
a perfect classifier and yields an AP score of 0.95. This asserts
the robustness of our model to detect threats from new (unseen)
attack sources. However, it is unfeasible to plot a PR curve
for a MV classifier, such as Kaiafas’s model. A MV classifier
depends on decisions made by several classifiers and a single
chosen threshold across classifiers in not suitable. Therefore,
we compare the overall robustness of the two classifiers using
the F1 score. While our model obtains a high F1 score of
0.914, Kaiafas’s model scores a low F1 score of 0.675.

0 20 40 60 80 100
0

20

40

60

80

100

AP = 0.95

Recall (%)

Pr
ec

is
io

n
(%

)

Our Model
Perfect Classifier

Fig. 1. Precision-Recall curve of our model

V. CONCLUSION AND FUTURE WORK

We leverage Windows event logs for anomaly-based detec-
tion of malicious RDP sessions. With the identified shortcom-
ings of two public datasets, we synthesize a combined dataset
that remains faithful to the attack models. Using the combined
dataset, we identify relevant features, and leverage DT, RF,
FNN, GNB, and LB to detect malicious log entries. After
evaluating the classifiers in both stand-alone and ensemble
settings, we chose LB as the best model with respect to

accuracy, recall and precision in RDP session classification.
LB shows promising results and outperforms a state-of-the-art
model [9] in recall and training time for detecting malicious
Windows RDP sessions.

We intend to explore further model parameter tuning, test
with other uncharted features and incorporate unsupervised
learning as a pre-processor to pruning datapoints. In addition,
our approach can benefit from online learning. Training ML
models from scratch can be computationally intensive, time
consuming, and prohibitive. Therefore, it is crucial to retrain
ML models as new data becomes available, thus accommodat-
ing ML models boundary changes after deployment. We will
also extend our approach to other session-based protocols, as
suitable datasets become available.

ACKNOWLEDGMENTS

This work is supported in part by the Royal Bank of Canada,
and the NSERC CRD Grant No. 530335.

REFERENCES

[1] S. Karnouskos, “Stuxnet worm impact on industrial cyber-physical system
security,” in Proceedings of IEEE IECON, 2011.

[2] Kaspersky Lab, “Carbanak apt: The great bank robbery,” 2015,
accessed: 2019-03-03. [Online]. Available: https://securelist.com/
the-great-bank-robbery-the-carbanak-apt/68732/

[3] J. DiMaggio, “The black vine cyberespionage group,” Aug 2015,
accessed: 2019-02-28. [Online]. Available: https://securelist.com/
the-great-bank-robbery-the-carbanak-apt/68732/

[4] R. Boutaba et al., “A comprehensive survey on machine learning for
networking: evolution, applications and research opportunities,” Journal
of Internet Services and Applications, vol. 9, no. 1, 2018.

[5] S. Ayoubi et al., “Machine learning for cognitive network management,”
IEEE Communications Magazine, vol. 56, no. 1, pp. 158–165, 2018.

[6] M. Ussath et al., “Advanced persistent threats: Behind the scenes,” in
Proceedings of CISS, 2016.

[7] A. D. Kent, “Comprehensive, Multi-Source Cyber-Security Events,” Los
Alamos National Laboratory, 2015.

[8] M. J. M. Turcotte et al., Unified Host and Network Data Set. World
Scientific, Nov 2018, ch. Chapter 1.

[9] G. Kaiafas et al., “Detecting malicious authentication events trustfully,”
in Proceedings of IEEE NOMS, April 2018.

[10] M. Ussath et al., “Identifying suspicious user behavior with neural
networks,” in Proceeding of IEEE CSCloud, June 2017.

[11] H. Siadati and N. Memon, “Detecting structurally anomalous logins
within enterprise networks,” in Proceedings of the ACM CCS, 2017, pp.
1273–1284.

[12] S. Garcı́a et al., “An empirical comparison of botnet detection methods,”
Comput. Secur., vol. 45, 2014.

[13] E. B. B. Samani et al., “Towards effective feature selection in machine
learning-based botnet detection approaches,” IEEE CNS, 2014.

[14] JPCERT Coordination Center, “Detecting lateral movement through
tracking event logs,” Dec 2017, accessed: 2019-02-26. [Online].
Available: https://www.jpcert.or.jp/english/pub/sr/ir research.html

[15] A. D. Kent, “Proceedings of Cybersecurity Data Sources for Dynamic
Network Research,” in Dynamic Networks in Cybersecurity, Jun. 2015.

[16] C. Gormley and Z. Tong, Elasticsearch: The Definitive Guide, 1st ed.
O’Reilly Media, Inc., 2015.

[17] T. E. Oliphant, Guide to NumPy, 2nd ed. USA: CreateSpace Independent
Publishing Platform, 2015.

[18] E. Jones et al., “SciPy: Open source scientific tools for Python,” 2001–,
accessed Mar 2019. [Online]. Available: http://www.scipy.org/

[19] W. McKinney, “Data structures for statistical computing in python,” in
Proceedings of SciPy, 2010.

[20] Pedregosa et al., “Scikit-learn: Machine learning in python,” J. Mach.
Learn. Res., vol. 12, Nov. 2011.

[21] F. Chollet et al., “Keras,” https://keras.io, 2015.
[22] J. Friedman et al., “Additive logistic regression: a statistical view of

boosting,” Annals of Statistics, vol. 28, p. 2000, 1998.


